

Low Impact Landscaping for Homeowners

Bob Hartzel, CLM, CPESC Geosyntec Consultants, Inc.

Mirror Lake Protective Association

July 20, 2013

Low Impact Landscaping

- LID Overview
- Raingardens / Bioretention Cells
- Vegetated Buffers
- Other Techniques
- Benefits of LID: Nashoba Brook Watershed Case Study

Lesson #1:

It's Water...Not Trash.

A pile of water.

A pile of trash.

Criminal detention center

Detention basin

Overs! in **Conventional** Development **Centralized Pipe** and Pond Control

61 F2

LID Development

Multiple Systems

Conservation Minimization **Soil Amendments Open Drainage** Infiltration BMPs Vegetative BMPs **Rain Barrels Pollution Prevention**

> Disconnected Decentralized Distributed

Lesson #2: Impervious surfaces...

Latin Root:

"Not allowing passage into or through something."

Lesson #2: Impervious surfaces...

...lead to stormwater problems.

- higher peak flows
- reduced base flows
- higher pollutant loads

Mirror Lake Watershed – Impervious Cover

Land Use Analysis

PHOSPHORUS LOADING BUDGET

- Stormwater Runoff (Land Uses)
- Septic Systems
- Aerial Deposition
- Internal Loading

MIRROR LAKE WATER QUALITY GOAL

External P Load (lb/yr)

- Mirror Lake is Lower Mesotrophic (very good)...but it will take hard work to keep it that way:
 - > Stormwater Improvements
 - Land conservation
 - Wise development (zoning , ordinances, etc.)
- Small improvements on many sites will add up!

STORMWATER DISCHARGES FROM VARIOUS LAND COVERS

Low Impact Development (LID)

An ecosystem-based approach to land development and stormwater management

Goal: Mimic pre-development site hydrology

LID Stormwater Controls Rain Garden <u>Treatment Train</u> Approach

Raingarden Cell

Grass Filter Strip

Raingarden Cell

Storm Drain System

Geosyntee

Low Impact Development Stormwater Controls

A bowl-shaped garden designed to capture and absorb stormwater.

Bioretention Cell

Similar to raingarden, more highly engineered:

- underdrain/riser pipe
- gravel bed
- engineered soils

Street Edge Alternatives (SEA)

Functional Landscape

Reduced Impervious Area

98% Stormwater volume reduction for 2-year storm

"SEA" Street: Maximized space for filtration, recharge and landscape elements

How to Build a Raingarden!

The Vermont Raingarden Manual

http://nsgl.gso.uri.edu/lcsg/lcsgh09001.pdf

The Vermont Rain Garden Manual

"Gardening to Absorb the Storm"

Helping to protect and restore Vermont's rivers and lakes.

Choosing a Raingarden Location

For roof runoff, garden should be 10 feet from house to prevent basement seepage

Select a flat area if possible for easier installation

Scall Dig Safe (1-888-DIG-SAFE) 3 days before digging

Choosing a Raingarden Location

Do not place within wetlands or naturally wet areas

Avoid disturbing tree roots

Do not place over a septic tank, leach field or drinking water well

Step 1: Calculate Drainage Area

(Length) X (Width) = Drainage Area ft²

Estimate drainage area from:

- Roof
- Lawn
- Road
- Other (forested, etc.)

This can be tricky! May require observation during rain.

Step 2: Evaluate Soil

PIT TEST

- Dig hole 6" deep, fill with water
- Choose new site if water is still standing after 24 hrs

Step 2: Evaluate Soil

IDENTIFY SOIL TYPE

- 1. Roll handful of moist soil into ball
- 2. Work soil upwards between thumb and forefinger to form ¼" ribbon of uniform thickness/width
- 3. Repeat motion until ribbon breaks under its own weight
- 4. Measure to determine if sand, silt or clay

SAND: Soil does not form a ribbon SILT: Weak ribbon < 1.5" (before breaking) CLAY: Ribbon > 1.5"

Step 3: Calculate Slope

- 1. Stake uphill and downhill ends of raingarden
- 2. Level a string between stakes
- 3. Measure string length and height of string at downhill stake (inches)
- 4. (Height / Length) x 100 = Slope
- 5. Use table for rain garden depth

Table 1		
Slope	Depth	
< 4%	3-5 in	
5-7%	6-7 in	
8-12%	8 in+	

Step 4: Raingarden Sizing

Size Factor X Drainage Area = Rain Garden Area

- 1. Use table to determine size factor
- 2. Multiply size factor by drainage area = recommended rain garden size

Table 2	Depth		
Soil Type	3-5 in	6-7 in	8 in +
Sand	0.19	0.15	0.08
Silt	0.34	0.25	0.16
Clay	0.43	0.32	0.20

Step 5: Raingarden Design

- 1. Any shape, but <u>must</u> have level bed
- 2. Water Entrance
 - Stabilize entry point(s) with stone
 - Direct water to raingarden with:
 - downspout extensions
 - grass /rock-lined swale
 - > piping
- 3. Select Plantings

Red Osier Dogwood

Silky Dogwood

Rugosa Rose

Virginia Rose

Bayberry

Black Chokeberry

Inkberry

Shrubs

Sweet pepperbush

Winterberry holly

Sheep laurel

Highbush blueberry

Mountain laurel

Maple-leaf viburnum

Meadowsweet

Northern Arrowood

Pussy Willow

Serviceberry

Highbush Blueberry

Perennial Flowers

Coneflower

Black-eyed Susan

Purple Joe-Pye Weed

Marsh Blazing Star

Daisies

Helenium/Sneezeweed

Daylilies

Perennial Flowers

New England Aster White Turtlehead Boneset

Blue Flag Iris Cardinal Flower Wild Bergamot Foamflower

Groundcovers

Bearberry Partridgeberry

Virginia Creeper Lowbush blueberry

Ferns

Cinnamon fern

Royal fern

Christmas fern

Grasses / Sedges

Canada Bluejoint or Reedgrass

Pennsylvania sedge

Narrow-leaved cat-tail

Perennial Daylily Rain Garden

Breen trigland Anter Uniter remain-Angliaid unight: 4-3 feet Space: 2 feet Blocene: Midsummer to level

incarts Alive Duyliky inconerocalits Thearts Alive? Height: Stinches Space: 24 inches Biocome Line - July

Zitappy Returns (Leylly Demotocialis Teappy Returns) incide: 18 Inches Space: 12 inches sloome pane to first

An Easy Daylily Garden Layout

Coseye tantlower Inclusion beliantheidesl Height 3-5 feet Space: 30 inches thomas All summer

7 starsh silkweed (Ascheptas incarnatal seight 3-3 leet space: 1 loot stoorre have through 4uppat

Occente shephend zuskly itemenscallis Ventle shephend) reight zu inches space: 34 inches stoorm: June - 3dy Autoren toy Sectore bodure X 'Autoren toy'l recight: 18-24 inches space: 18 inches illocem: Late summer to front

Catherine Woodbary Doylily Demencicallis Catherine Woodbary'l Height: 33 Inches Space: 24 Inches Blootte: Jane - August

Complect American tumber ybash hibuman infolum **Bailes** Compact? might 4.5 Spaces 4" o. c. news red fall folloge, ned bendes later whites. Eksentre: May-

Viboream bilolases feat

Vibernam blicham Bowers

a

villagenciers tell-closers fall color.

5 such silkwood Asclepias incanatal Height 3-5 loci Space: I foot theorem have through suggest

2 Annubelle Hydrongen Invitangea advorescens 'Assabelle'i energist: 4-5" Space: 4'd. C. slooms while flowers same - salv

4

Height 15 inches Space 11 inches Mouses May he front

3 Anthony Waterer Spirca Spirca x burnalita 'Anthony Waterer' Height 2-3." MARCE TO D tikocern: nate - july rose-piek. flowers ned leaves in fail

Ge

Geosymter

Step 6: Installation

- 1. Define Borders (string, spray paint)
- 2. Remove Grass
- 3. Dig / Level the bed

Step 6: Installation

- When building a raingarden on a slope, create a berm to hold water.
- Level the bed and use the dirt removed to create the berm

Soils specifications (for bioretention):

Underlying soils should drain >0.25 inches/hr

>6 inches soil over 24 hrs

Bioretention soil:

75% sand (ASTM c-33 concrete sand), 25% organic matter (compost)

Or...

- 50% sand, 30% topsoil (loam), 20% organic matter
- Underdrains may be required

Infiltration rate = 5 inches/hour

Figure 3: Level bed with sloping edges. This design requires more space. Only plants that can thrive in drier soil conditions can be planted on the upper slope of this type of raingarden; true rain garden plants will not thrive here.

Figure 4: Level bed without sloping edges. Ideal design for tight spaces.

Before

After

Geosyntec^D consultants

Step 6: Installation

- 4. Improve the soil ("Soil Amendment")
 - Till 2-4" compost into native soil
- 5. Plant (shrubs on approx. 3' centers)
 - Water immediately
- 6. Mulch (2"-3")

Step 7: Maintenance

- 1. Water new plants regularly until roots are established
- 2. Weed / replace failed plantings
- 3. Refresh mulch as needed

Lake Shirley Bioretention Cell

Straw mulch "blanket"

Lake Shirley Bioretention Cell

Lesson: Small is beautiful!

100 ft Bioretention Cell in Parking Lot

Bioretention cell with overflow

Vegetated Filter Strips / Buffers

Vegetated Buffers

- Pollutant Uptake /Filtering
- Habitat / Wildlife Food Source
- Shading
- Aesthetics
- Physical deterrent to geese

Buffer Design Criteria

- Aesthetics. Include a diversity of native shrubs, wildflowers and ground cover that will add visual interest and provide year-round color.
- Maintain (reasonable) access and views.
- Use low-maintenance native plants, beneficial to wildlife.
- Maintain a "useable area" between the homes and buffer for picnic tables, chairs, etc.

• The wider the better...10'-20' minimum for filtration

66

R)

H I

Staked straw bales to protect the lake from sediment during the buffer installation.

2 days for site preparation and buffer installation .

Lake Shirley, Lunenburg, MA

Case Study: Vegetated Buffer

Lake Wyola Shutesbury, Massachusetts

State Park Beach Area

Persistent problems with beach erosion from road runoff

Pre-Construction Condition

Shrub Buffer Plantings

Silky Dogwood

Red Osier Dogwood

Bayberry

Pussy Willow

Meadowsweet

Northern Arrowood

Sweet Pepperbush

Installation

Vegetated Buffer

Fully Stabilized Vegetated Buffer

Other Techniques

Infiltrating Planter Box for Roof Runoff (Plymouth, MA)

filterra Biogramment on Systems

High Flow Bypess

Bioretention

Plant/Soil/Microbe Complex Removes Pollutants, TSS, Phosphorus, Nitrogen, Bacteria, Heavy Metals, Hydrocarbons, etc.

> Filterra® Flow Line at Higher Elevation than Dypass Flow Line

New or Existing Catch Basin, Curb Cut or Other Means of Overflow Relief

Curli and Gutter

Storm Water Inflow ("First Flush")

> Energy Dissipator -Stones

Clean-out

Treated Stormwater Underdrain System 3" Mulch
 Filterra" Engineered Media

Hiterra[®] Concrete Container

A Dessare of TAMERICAST

Rain Barrels

- For capture/re-use of roof runoff
- Most barrels average 60 gallons and cost \$75 - \$125
- Cisterns are much larger systems, often involving pumps and drywell structures.

Porous Pavements (Wilmington MA)

- Interlocking Concrete Pavers
- Porous Asphalt / Concrete
- Flexipave

GravelPave

Turfstone

Dry Well / Infiltration Trench

- Dry wells range in size and complexity from a simple gravelfilled pit or trench to large perforated structures fed by drainage pipes.
- Often used to capture runoff from roof downspouts, driveways
- Work best in sand/gravel soils

Soils

Hydrologic Soil Groups

- A: Sand, loamy sand or sandy loam soils. High infiltration rates!
- B: Silt loam or loam. Moderate infiltration when fully wetted.
- C: Sandy clay loam. Poor infiltration when thoroughly wetted.
- D: Clay loam, silty clay loam, sandy clay, silty clay or clay. Highest runoff potential, very low infiltration when fully wetted.

Water Bars

- Water bars intercept runoff on sloped pathways and divert it to stable vegetated areas
- Install on sloped paths with concentrated flows
- Construct with 6"-8" diameter timbers and ³/₄" crushed stone
- Install multiple bars with spacing based on table

Table 1. Water Bar Spacing	
% Grade	Spacing Between Water Bars (in feet)
2	250
5	130
10	80
15	50
25+	40

A Shoreland Homeowner's Guide to Stormwater Management (NHDES)

Green Roofs

- Can be built almost any flat or low-angle roof.
- Reduce stormwater runoff
 volume and peak discharge
- Lower heating and cooling costs.
- Cost: \$30-\$45 per square foot

Soil Amendment

- Any material added to soil to improve water retention, infiltration and structure.
- Add organic matter and nutrients to the soil, which stimulates plant growth.
- Compost can be tilled or added to the surface as a mulch. This "compost blanket" will retain water and improve water quality.
- Reduces need for fertilizer.
- Cost: \$15-25 per cubic yard, depending on whether delivery is needed.

LID Costs (Installed)

- > Raingarden:
 - With Stone = \$12 sf Without Stone = \$10 sf

Bioretention Cell:

(Unlike raingardens, biocells have piping such as an underdrain to a catch basin)

Large (1000+ sf) = \$8 sf Medium (500-1000 sf) = \$10 sf Small (200-500 sf) = \$30 sf Very Small (<200 sf) = \$30 sf

Porous Pavement:

(includes infiltration bed 24" min) Pavers (large area) = \$8 sf Pavers (small area) = \$12 sf Asphalt (large area) = \$7 sf FlexiPave = \$8 sf GravelPave = \$15 sf

> Swale:

(includes bioretention soil mix) Grass = \$8 lf Vegetated/Bioretention = \$10 lf

Catch Basin Upgrade:

Deep Sump = \$3,000 installed Hydrodynamic Separator = \$12-15,000 installed

> Tree Box Filters:

(Filterra) \$10K per 0.25 ac
Thank you for your time!

engliseers (aclessibility) innovators